AT

PB96-148432

POINT-TO-POINT MULTICAST COMMUNICATIONS
PROTOCOL

STANFORD UNIV., CA

JAN 87

u.S. ﬁ'EPARTMENT OF GﬁMMERCE
National Techiica! Information Strvice

RITY CLASSIF CATION OF Tr15 PAGE

REPORT DOCUMENTATION PAGE

Ferm Approvcd ﬁ
OMB No 0704-0188 '
Exp Date Juh 30, 19(

1a. REPORT SECURITY CLASSIFICATION
unclassified

|

1. RESTRICTIVE MARKINGS

=

i

2a . SECURITY CLASSIFICATION.AUTHORITY

3. DS TRIBUTION / AVAILABILITY OF REPORT
Approved for public release: -

“36 OECLASSIFICATION / DOWNGRADING SCHEDULE

Distribution unlimited

a PERFORMING ORGANIZATION REPORT NUMBER(S)
STAN-=CS~-87-1146

5. MONITORING ORGANIZATION REPORT NUMBERS)

[6 NAME OF PERFORMING ORGANIZATION
Computer Science Department

6. .OFFICE SYMBOL
(if applicable)

7a..NAME OF MONITORING ORGANIZATION

&, ADDRESS (C'ty, State, and 2IP Code) - -

Stanford University
Stanford, CA 94305

7b. ADDRESS (City, State. and 21P Codel

85, OFFICE SYMBOL
(if applicadle)

p————————————————————
8a. NAME OF FUNDlNGISPONSOR!NG
ORGANIZATION

DARPA

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUVBER
F30602-85-C-0012

&. ADDRESS (Cify, State, and ZIP Code)

1400 Wilson Blvd.
Ar11ngton, VA 22209

70. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK
ELEMENY NO. NO. NO.

WORK UNIT
ACCESSION 11

11. TITLE (Incluce Socumy Clcwficmon)

Point-to-Point Multicast Communications Protocol

T2, PERSONAL AUTHOR(S
Greaory

Byr‘é RusseH Nakano, Bruce A. Delaqgi

j
!

130 TYPE OF REPORT 135 TIME COVEREO

14, DATE OF. REPORT (vear, Month, Day) 115, gaéés COUNT

]

| FROM (- 1987 January _
16 SUPPLEMENTARY NOTATION i
T ~COSATI CODES . 18 SUBIECT TERMS (Coatinue on reverse if necessary ami rentify by Block numbee)
~FELD GROUP SUS-GROUP

Many neiwork

cofrifiion resourcés a8 much as possible.

19 ABSTRACT (Cantm'll on rcvem if mcnwy and vdermfy by bloth numtm)

topologies have_been proposed for connécting a large numi-
bér of processor-mémmory paifs in a high-perfofinanée multiptocesiot system. In
terins of performance, howevet, the communications protocol decisions may be
as crucial as topology. This paper désctibés a protocol to support point-to-point
inteérprocessor communications with multicast. Dynairic, cut-through routing
with local flow coatrol is used to provide a high-throughput, low-latency com-
munications path beétween processots. In addition, multicast transmissions are
available, in which copied of a packet are sent to multiple destinations using

tivé bufféring are introduceéd to avoid deadlock during multicasts. A sithulated
irplementation of the piotocol is also desciibed.

Special packet términators and selec-

20 OISfRIIUTIONIAVA!LAIILITY OF AOSTRAC?
_ QD uncrassireounumited] SAME S RPT.
22a. NAME OF RESPONSIBLE INDIVIDUAL

3 oric usens

21, ARSTRACT SECURITY CLASSIFICATION -

325, TELEPHONE (include Ares Coow) | 32¢ OFFICE SYMBOL

DD FORM 1473, sa Mar

03 AR edition may be used until éxhausted .

SIFICATION OF THi$ »

RITY

Ali other editions are bs~lete.

Knowledge Systems Laboratory
Report No. KSL-87-02

January 1987

A Point-to-Point Multicast

Communications Protocol

Gregory T. Byrdt
Department of Electrical Engineering

Stanford University
Stanford, CA 94303

Russell Nakano
Department of Computer Science
Stanford University
Stanford, CA 94305

Bruce A. Delagi
Worksystems Enginéering Group
Digital Equipment Corporation
Maynard, MA 01754

This work was supported by DARPA Contract F80602-85-C-0012, NASA Ames Contract
NCC 2-290-51, and Boeing Contract W266875.

tG. Byrd is supported by an NSF Graduate Fellowship, with additional support provided

by the EE Dept.

PAOTECTED UNDEF
ALL RIGHTS AESERY
NATIONAL TECHN

IE%féﬁNATiONAL COPYHI(
ICAL INFORMATION SERVICE

U.S. DEPARTMENT OF COMMERCE

Abstract

Many network topologies have been ptoposed for connecting a lafge num-
ber of processor-memory pairs in a high-performar.ce multiprocessor system. In
terms of performance, however, the commiunications protceol decisions may be
as crucial as topology. This papet describes a protocol to suppott point-to-point
intérprocessor communications with multicast. Dynamic, cut-through routing
with local flow control is used to provide a high-thioughput, low-latency com-
munications path between processors. In addition, multicast transmissions are
available, in which copies of a packet are sent to multiple destinations using
common résources as much as possible. Special packet terminators and selec-
tive buffering are introduced to avuid deadlock during multicasts. A simulated
implementation of the protocol is also described.

Contents

1 Introduction

1
2 Components - 2
3 Protocol Overview . 4
3.1 Packets e e e e e e e e 4 __
3.2 Packet Transmission00 4
33 FlowControlo v v vt it it e e 6
3.4 Deadlock Avoidance e e e 7
4 The Protocol 9
4.1 Deadlock Avoidance Mechanisms 9
4.2 Generic Component Description. 10.
4.3 Operator e e e 11
43.1 SendingaPacket 12
432 ReceivingaPacket 12
44 Fifo-buffer 13
45 Net-Imput it 15
451 CommitMode 17
452 AbortMode. 18
46 Router i i i i ittt e e 18
47 Net-Output it 20
5 CARE Implementation 22.
5.1 Operator SN e e e e e e e e e e e e 23
52 Fifobuffer. 24
53 NetImputt e — 26
B4 Router vttt e e 28
55 Net-Output e e e 28
58 Results.00, 29
6 Conclusion 29
References 29

List of Figures

1 ComponentsofaCARE sife.0.0...
2 Organizationofapacket.
3 Network component interconnections.
4 Example of deadlock i a multicast.
5 Generic network component. ..o e e
6 — A state transition diagram. e e
7 Fifo-buffer state diagram. e
8 Net-input statediagram.
9 Net-output statediagram.
10 Implemented fifo-buffer output state diagram.
11 Implemented net-input state diagram.,

List of Tables

Packet terminators. e e e e
Flow-control signals. e,
Communication cycle phases. W e e e
Input andoutput ports.
Input states for fifo-buffer.
Statesformet-input.
Routing tables. e e e
States fornet-output.,

mHOATPEROOW»

1 Introduction

Many network topologies have been proposed for conneciing a large number of
processor-memory pairs in a high-performance multiprocessor system [1]. These
topologies are often evaluated in terms of the average number of hops traversed
by a packet, for example. Howaver, the network performance may depend as
much on ita communic¢ation protocol as on its physical topology. For example,
suppose the average number of hops in a network is M.and the average packet
length is N. In a store-and-forward network, the transmission time of a packet
would be proportional to M x N. If cut-through. swit¢hing is used, however,
the transmission time would be proportional to M + N, a significant difference
for relatively large values of M or N. An appropriate communications protécol,.
then, is crucial if the full benefits of a topology are to be realized.

The-protocol described in this paper is designed to fully utilize network
tesources. Dynamic, cut-through routing with local flow control is used to pro-
vide a high-throughput, low-latency ¢communications path between processors.
In addition, a multicast facility is provided, in whith copies of a packet are sent
to multiple destinations, using common resources as rnuch as possible.

Dynami¢ routing means that the communications channel to be used is cho-
sen at transmission time, based on what channels aré available. The alternative,
static routing, would prescribe a specific channei for every destination—if that
channel were not available, the transmission would be blocked. Dynamic rout-
ing, by adapting to currént channel usage, attempts to balance the network
load. It is especially useful when the communications traffic is unpredictable or
variable over time [2]. Balancing the load allows more of the commuaications
resources of the system to be well used throughout a computation.

Cut-through routing [3) means that a routing decision is madeon the fly, as a
packet is received, rather than first buffeting the entite packet and ther deciding
what to do with.it.! This reduces buffering requirements in the system, since the
packet does.not need to bé stored at intermediate points in the transmission.?
Kernami and Kleinrock [5] demonstrate that the cut-through approach outpet-
forms both circuit switching and message switching (storée-and-forward) when
the écommunication paths are short, nevwork utilization is relatively high, and
messages are fairly small.

Flow contrdl, in general, is any mechanism which attempts to regulate the
flow of information from a sender to match the fate at which the receiver ¢an
accept it [6]. Ia this protocol, a ttansmission may be blocked aiid tesurned in
the event of network congestion. If an output channel becomes blocked, the
seridet stops sending data and halta the flow of data from upstréam. When the

channel becormes unblocked, the-trafisinission is continued from where it was

VA relatéd coficeps is staged citcuit switching, described in [4].

2Cut-through switching au described in (3] requires that thé packet be coifiplétely bufféred
if the output chadintel is blocked. In this protocol, fio fusthér data will be receivéd from
downstream uatil the chainel bécornes available. Thus, packet bufféring is fiot requited.

halted. The flow conttol mechanism is local, bécause actions are taken based on
the state of the downstream component rather than global information about
the entire network.

Multicast transmissions in a pointto<point network allow a packet to be

sent to multiple destinations, using common resources as much as possible. The.

packet i replicated as needed, and subsets of the original target list are assigned
to the copies. Thus, “virtual busses” are available precisely as and when they
are nseded. Selective buffering and special packet terminators allow potential
deadlock conditions in multicasts.to be detected and avoided.

The network components which define the protocol are introduced in Sec-

tion 2, and the protocol itself is described in Sections 3 and 4. Finally, Section 5 -

destribes. an implementation of the protocol in the CARE simulation system.

2 Components

This section defines the network components used by the protocol. The protocol.

is defined by the behavior of thess components and the values that are passed
among them. Of course, these components do not necessarily correspond to
distinct physical entities in a machins whith implements this protocol-—they are
merely a useful means of spacifying the funrtional behavior of such a machine.

The site component corresponds to a processor-memory pair in the target
machine. In particular, a site contains an operator, an evaluator, a routet,
some local storage, and some network interface ¢components, which ace called
net-inputs and nét-outputs (see Figure 1).

The evaluator is the part of the site which executes application code. The
evaluator can request network activity, but otherwise has nio role in the network
behavior of the system, so very little will be said about it in this paper.

The operatoris responsible for handling systern-level activity, including com-
munication. In the target machine, it would créate packets to be sent over the
network and accept transmissions destined for its associated procescor. The
operator and evaluator communicate through shared local metriory. The details
of this communication will not be addressed in this paper.

The site ¢omiponents which interface directly to the network are called net-
ifiputs and net-outputs. On éach site, there is a nét-input/nét-output pair con-
nécted to the operator, for local packet origination and délivery, as well as a
pair for évery communication channel to the network.? We will refer to the pait
connécted to the operator as the “local” net-input and net-output.

The net-input is resporisible for accepting a packet, making connéctions (us-
ing the routér) to oné of moié¢ net-outputs, and sending it on.its way. The
net-output is concerned with delivering the packet to a particular location, ei-
ther the local opérator or the next sité on the transmission path. Note.that,

3The éxact humbér of nét-inputs/net-outpus pairs requifed.by a site depefids on the nét-
work topology.

From R
Network Metwork

¥ 2

Rl

lapat _ L Outpat
® ¥ {2
Network Router |
Network Local Local
Net. Net-
_&afm lnput
Upstream Dowastres
Fifos Fifo-
o .
M P
. ol Operator
m
0
.
v
5 _y__.: o Evaluator

Site

Figure 1: Components of a CARE site.

because of cut-through routing, net-inputs and net-outputs are only required to
have ¢nough storage for one word of a packet, rather than the entire packet.

The router connects all the net-inputs on a sité to all the net-outputs. When
it receives a packei from a net-input, it determines the destination (or destina-
tions) and makss the conneéction to the appropriate net-output (or net-outputs).
Also, flow control information from thé net-outputs ate relayed by the router to
the appropriate net-input.

A pair of buffers, called fifo-buffers, queue packets between the opetator and
local pet-input and net-output. The upstream fifo-buffer. queues packets from
the nétwork to theé operator; the.downstréam queuss packets from the operator
to the network.

3 Protocol Overview

3.1 Packets

Figure 2 shows the organization of a packet. The first part a packet is devoted
to the target entries. Each entry contains a target address, a pointer to data
within the packet, and flags indicating the last target in the list.

Following the target addresses are zero or more words of data and a one-
word packet terminator. There are three distinét packet terminators, as shown
in ,Tabl‘e A, which are used by the operator to determine the status of the
packet.

TaggetJEntry 1
Target Entry 2|

Tatget Entry n

Data

Packet Terminator

Figure 2: Organization of a packet.

" Terminator Meaning
iend-of-packet Normal packet termination.,
:abort-packet Packet is to be discarded by operator
.1ocal-end-of-packet Treat as end-of-packet exéept ignore
all packet targets other than the local site. |

Table A: Packet terminators.

3.2 Packet Transmission
The transmission path of a packet is showr in Figure 3. First, an évaluator
réquests a packet transtnission. The operator then sends the packet (through

a buffer) to the local net-input. For ihe hofnent, assuine that.there is only .

one target for the packet. (This is called.a unicast transinission.) The routet
ther decides which net-output should receive the packet, based on the tar-
get address and the availability of net-outputs, sets up a connéctiont between
the local net-input and the selected net-output, and begins the transfer of the

4 As described in Subsection 4.3.

e et

Interconnection Netwark B

L

{

Nét- jumed Net-

4 Input Output)
\ Router)
Local “Tocal
Net- Net-
Output Input
Upstream ownstre 4l
Fife " Fifo-
Buffer i Buffer

.'_1\;;'\

. ».Operator
m

(1]

r o

y Evaluator
N

kSi!ed o -

A 4
Net. Neét-

4 Input | Output \
[Router)
Tocal Cocal
Net. Net-
Qutput Input
Upstream ownstrean
Fifo- Fifo-
Buffer Buffer

.-"—\

Ll .

M Operator

e

m

0 i

r -

y Evaluator
L"ﬁ_—‘j
\Site-2__ J

Figure 3: Network comporent intercofinections. Packets travel in the direction
marked by arfows. Flow control information flows in the opposite direction.

packet. Each non-local net-output is physically contie¢ted to a net-input on a
(logically) neighboring site. When available, this net-input accepts the packet,
and its rotiter sends the data to the local net-output, if the target has been
reached, or to another net-output, if not. This continues until the target. has

been reached, where the local net-output delivers the packet to the operator .

(through a fifo-buffer). The operator can then perform whatever. operation is
specified by the packet, such as storing the value in memory or queueing some
operation for the evaluator, for example.

If the packet has more than one target, the router may split it—that is, it
may send (essentially) the same packet to several nét-outputs. This i3 called
a maulticast transmission. Each transmitted packet contains a distinct subset
of the targets of the otiginal packet. The copying operation is done during
transmission, one word at a time, as opposed to buffering the entire packet and
making copies. If one branch of the multicast is blocked, the net-input sends
pad characters down the other branches until valid data may be sent down all
the paths. The pad characters are thrown away when received by a fifo-buffer..

3.3 Flow Control

Flow control information, in the form of status signals, flows in the direction
opposite to packet transmission. Theie are four distinct status signals, as shown
in Table B. The status signals are used to indicate to the upstream component
whether the packet or packet terminator can safely be transmitted.

A 'free signal means that the component is not currently involved in a
transmission and is ready to receive data. An 'open signal is used when the
component is invélved in a transmission and is ready to receive the next word of

the packet. If the transmission becomes blocked for sotne resson, a *wait signal.

is sent upstream .to6 temporarily halt the flow of data. Finally, the ‘abort-
request signal indicates that a potential deadlock condition has been detected
and the transmission may be abotted. Details sbout how these signals are
generated and interpreted will be presented it Section 4.

~ Scatus Meaning
'free Availablée to recsive packet.
‘open Packet headér has beer: received; available
to receiva more data. .
‘wait Busy oz network is blocked; do not send
. more data. . ‘ .
‘abort-request | Potential deadlock detéected.?

%Only a fifo-buffer may originate the *abort-request signal.

Table B: Flow-control signals.

Component Odd Phase Even Phase

Latch status from

downstream and Open status latch to
Net-Input | conditionally open data | allew status information .
latch to allow data to te flow upstream.

flowr downstieam.

Latch status from

Open statys latch to downstream and
Net-Output_| allow status information | conditionally open data
to flow upstream. latch to allow data to

flow downstream.

Table C: Commiunication cycle phases.

A communication cycle consists of two inajor phases® (see Table C). During
one phase a compornent latches the status signal from downstream. Based
on that signal, it may open its data latch to allow data from upstream to
flow downstream. Otherwise, it holds the previously latched data. During the
other phase, the component opens its status latch to allow status information
(perhaps modified by the component) to flow upstream. The cycles of adjacent
network comporients (é.g., net-inputs and nét-outputs) ate arranged sc that one
component is latching the status information while the downstream component
12 determining the status for the next cycle. Thus there cannot b2 a race betwsen
the latching of data and the status signal which controls it.

3.4 Deadlock Avoidance

The existence of packet multicasts introduces the possibility of deadlock. A

packet traveling through the netwotk acquirés the use of network resources -

(e.g., net-inputs and net-outputs) and simultaneously excludes the use of those
resoufces by other packets. 'Vithout special attention paid to the possibility of
deadlocks, it is possible that resources ate consumed to petform the. multicast,
but completion of the multicast is not paossible bécause the resources acquired
are insufficient..

If only unicast transimissions were allowed, this kind of deadlock would not
occur. Assuming that a packet cannot beé infinitely long, & blocked unicast
packet will eventually either acquire the network connectiori that it needs or
be (temporarily) stored at the local s.‘e (freeing up any upstieam resources for

> Any necessary signal sérialization would occur within & major phase,

« Netlngit |
B - Net-Outpit
E « Fifo-BufTie

Figure 4: Example of deadlock in a multicast.

this packet). In other words, any réesoutce thag is acquired will eventually be
released. ’

Figure 4 illustrates an example of how multicast deadlock ¢an arise. Sup-
pose we have two multicast transmissions, call them A and B, with common
destinations, site-/ and site-2. Suppose that one of the packets from multicast
A has already gained accéss to the local net-output on site-1. A packet frorn
multicast B has similarly gained access to thé local net-output on site-2. For
rhulticast A to ¢ontinue, it needs to gain access to the local net-output of site-£;5
for B to complete, it needs to gain access to the local net-output on site-1. Also,
néither. of the multicasts can release the résources it has already required until
thé transmission is completed. Since each multicast has acquired a resoutce
that the other needs, a deadlock results.

In ordét to recover from such a situation, the system must:

o Detect a potential deadlock condition, such as the situation described
above; -

¢ Back out of the unsafe condition (by abofting ofié or more transmissions,
thereby releasing some sét of.resources); and

$The transmission canndt continue because the net-input cannot sénd any words until
all b-ancheés of the multicast aré ready to receive it. Since the branch waitifig for the local
net-output of site-# is blocked, noneé of the branches may proceed.

¢ Retransmit the aborted packets later, when the network is (hopefully) less
congested.

Whenever a packet is split for multicast, the protocol requires that a ¢opy of
the original packet (with a complete target list) be sént to the local net-output.
This packet will then be stored in a fifo-buffer, so that it may be retransmitted
in the case that the currént multicast must be aborted due to deadlack.

The packet terminator has two roles in deadlock. avoidance. Fitst, a fifo-
buffet can detect a potential deadlock if the packet terminator has not been
received in a “reasonable” amount of time.™ Sécond, the packet terminatot in-
dicates to all operators which received the packet what should be done with

it. For example, a multicast.is aborted by sending the :abort-packet tetmi- -

natot downstream—all operators which receive a packet with this terminator
will ignore the packet. Also, the operator which receives the copy of the original
packet can tell whéther it needs to be rétransmitted by looking at its terminator.
More details will be presented in the next section.

These actions are sufficient to prevent persistent deadlock during multicasts.

Howevet, sinice there is finite storage in the system, a scenario can be constructed

in which all the storage becomes cornmitted and no packets can be delivered.
The protocol does not prevent this type of resource exhaustion. The assumption
is made that the designed capacity of the system is sufficient for its applicrtions.

4__The Protoéol

This section provides a detailed description of the behavior of each of the net-
work componénts. First, however, we present the details of the deadlock avoid-
ance mechanisms, so that the behavior of individual componénts can be undas-
stood in the context of an overall transmission.

4.1 Deadlock Avoidance Mechanisms

The protocol mechanisms which allow deadlocks to be detected and avoided areé
as followis:

1..If a packet has multiple targets, befote a routét can split the packet for
multicast, the local net-output must be available. This is to insure that a
connection to the fifo-buffer is possible, so that the packet may be stored
for possible fetransinission.

(a) The local riet-output is sent a copy of the packet which.coiitains a
complete target list (rathef than a subset). This assures that the
packet may bé fettansmitted to all-of its tatgets if the multicast is
aborted.

7See Subsection 4.1.

(b) If the local net-output is unavailable, thén the packet may be sent,
but only to.a single target.. The intent is that a packet sent.in this.
fashion will either visit each target site individually, or will eventually
reach a sité with an available local net-output and_be multicast to
the remaining sités.on the packet. target list.

2. Upon receiving the front end of a packet, the fifo-buffer starts a timeout
procedure.® If the timeout occurs befote the packet terminator is received,
the fifo-buffer asserts the 'abort-request signal upstream on the flow.
control line.

(a) When a net-input cutrently engaged in a multicast receives an
'abort-request (from a downstream fifo-buffer) before it sends the
packet terminator, the net-input goes into abort mode.

(b) Net-inputs which ate not involved in a multicast ignore the 'abort-
request signal; net-outputs merely pass an ’abort-request up-
stream. . .

3. In abort mode, the net-input performs several ac:ions:

(a) All connected non-local net<outputs are sent the :abortspacket ter--
minator, and they are disconnected from the net-input. This signals
any downstream opérator to ignord the packet when it is recéived.
At this point, only the connection to the local net-output is active.

(b) The *open flow control signal is sent upstream to unblock the packet
transmission.

{c) When the packet terminator arrives at the net-input, the packet ter-
tninator that is received is passed on to the local net-6utput. The
:abort-packet terminator causes the local operator to discard the
packet. The :end-of-packet terminator will fesult in retransmission,
if the original target list contained remote (riot.local) sites.

4.2 Generic-Component Description

Next we describe the behaviot of individual componerts. Most of the com-
ponents ate described as finite state rachines which havé input ports, output
poits, and intérnal state variables. The input and output ports are used to
pass packets and flow contiol information—packéts low downstream, flow coi-
tiol signials flow upstiéam. The ports and their functions are showii in Table D.
Figiiré 5 shows & “géneric” network comiporent, with its input and output ports.

$The inténit is to détermine when the packet terminator hias not astived in a “Feidonable”
arfiount of timé. This uiight actually bé & tifér, where the Intérval is sofié funiction of the
expected packet length, or it fight be sorie threshold Uit for thé numbeér of condecutivé pad
characters a fifo-buffér will accept. The details are not spécified by tlié protocol decusnentéd

Kere.

10

packet-in Status-out
Component
packet-out status-in

Figure 5: Genetic nétwork component.

Port_ ‘ Function
packet-in | Packet data from upstream component.
packet-out | Packet data to downstream component.
status-in__ | Flow control {rom downstream componeént.
status-out | Flow control to upstream component.

Table D: Input and cutput ports.

The behavior of most of the components can be described in térms of states
and transitions between those states (i.¢., a state machine). It is often useful to
illustrate the states and transitions in a state transition diagram, as in Figure 6.
The transitions are labelled with .the condition used to trigger the transition,
and the status signal to be sent upstream (through the status-out port) when
the transition is made.

CONDITION/ signal [|

Figure 6: A state transition diagram.

4.3 Operator
The operator seiids arid receives packets thiough thé nétwork and through the
memory it shafes with the evaluatoi. Thus, it has riioré tha oiie set of ports foi

11 —

packet communication. To avoid confusion, the ports it uses to comimunicate
with the nétwotk are. ptefixed network- (e.g., network-packet-in), while the
ports used for communication with the évaluatot are prefixed evaluator- (e.g.,
evaluator-packet-in). Only network communication will be discussed in this
papét..

With respect to the netwotk, both the.upstream and downstream cotfipo-
nents of .an operator are fifo-buffers. The upstream ﬁfo—buﬁ‘er‘ quéues packets
fom theé local net-output and sends them to the operator. The downstream
fifo-buffer queues packets from the operator and sends them to the local net-
input.

Two state variables are-uséd by the operator for network communications:

1. network-buffer: Used to temporatily store an incoming packet from the
network.

2. network-buffer-status: Indicates whether the packet in the netwoiki
buffer has been serviced (*new or ’old).

4.3.1 Sending a Packet

The operator has a queue of operations, or requests, which it services in order .
of arrival. If the head of this queue is a packet to be sent out into the nétwork,
and network-status-in is 'free, indicating that the downstream fifo-buffer is -
ready to accept a packet, the operator sends the packet (with an ~end-of-packet
tetrinator) through the network-packet-out port.

4.3.2 Receiving a.Packet
A packet arrival at the opeiator is signalled by the appeararice of data on
thé network-packet-in port. The network-status:out port is set to *open,
which signals to the upstream fifo-buffer.to kéep sending packet data until the
packet terminator arrives. The packet data is stored in the network-buffer.

The artival of ani :¢nd-of-packet signifies that the packet transmission was
successful. Network-buffer-status is set to *aew, signifying that the data
in the témporary buffer should be looked at. At somé later tiriié, the opetator
setvices tiie packet and serids a 'free signal to the incoming fifo-buffer (thiough
naetwork-status-out), indicating that afiother packét may be received, and
network-buf"sr-status is set to "old, so that the packét is ot serviced twica.

If the opefator notices that some of all of the tatget addresses of the received
packet do not cotfespoiid to its own-address, the packet is sent back out into
the fietwoik. This might happen for oiie of the following reasons:

1. During & usiicast transmission, a net-input could not make a connection

to the desited net-output. The packet is forced into the iocal fifo-buffer, —

so that the operator rhay resuriie the tranamission at a later tirie, fieeing
up thie net-input and its upstieain comporieiits.

12

2. A multicast transmission was aborted. The. local fifo-buffer. received a
copy of thé packet with a complete target list, so that the packet could be
rétransmitted in case of an abort.

A :local-end-of-packet terminator instructs.the operator to accept the.
packet, as in the case of :end-of-packet, but to ignote any non-local target
addresses. This indicates that a multicast was successful, and so does not have
to be retried.

The arrival of an :abort-packet terminator instruéts the operator to discard.
the packet. The operator then assérts *free on network-status-out, indicating
that another packet may be received, without setting network-buffer-status
to 'new—that is, the packet data.in the temporary buffer is never serviced.

4.4 Fifo-buffer

Each sité has two fifo-buffers, which have identical behavior but petfortn slightly
different functions. One fifo-buffer is upstream with respect to the operator, and .
the other is downstream.

On its output side, the upstreamn fifo-buffet is connected to the operator,
while the downstteam fifo-buffer is connected to the local net-input. If the
queue is not émpty, the fifo-buffer responds to a 'free or open signal on the
status-in port by removing the oldest item from the queue and sending it
through the packet-out port. If a 'wait signal is received, the transmission is
temporarily halted until a non-"wait signal appears. : :

On its input side, the upstream fifo-buffer is connected to the local net-
output, and the downstream fifo-buffer is connected to the operator. The fifo-
buffer néeds to keep track of (1) whether thé. packet data and terminator have
beén receivéd and (2) whether they have been placed in the queue. The state
diagram of the input side is shown in Figure 7, and the statés are described in
Table E.

State e) _ Meaning] .
‘opéen Ready for mote data; tesrinator not recéived.
‘'wait Queue full; terminator nok recéived.

‘done ~ | Terminatot téceived, but Nnot yet queued,
‘done-wait | Terminator recéived, but queue full.
free Tetminator queued, ready for next packet,

Table E: taput states fot fifo-buffer.

The fifo-buffer begins in the 'free state. Whenever data atfives on the
packet-in.port, if the quéué is not full, the ‘opon state is enteied and 'open
is assetted on status-out. If the queue-is full, the *wait state is énteéiéd and
'wait is asserted; when space becomes availablé in the queue, the 'open state

13

Condition | Meaning
DF | Data arrives, and queue full,
DNF | Data arrives, and queue not full,
F Queue full,
NF | Queue not full. ‘ »
TF Terminator arrives, and queue full,
TNF .| Terminator arrives, and queue not full.
TQ | Terminator queued.

Figure 7: Fifo-buffer state diagram.

is entered and ‘open is. asserted. If the queue becomes full at any point in

the transmission, the 'wait state is entered and the *wait signal is asserted on

status-out, so that no more data will be sent from upstream. When space
bécomes available, the 'open state is re-éntéred, and open is sent upstréam to
resume the flow of data.

When a packet terminator arrives, if the queue is not full, the *done 4tats-

is entéred and 'free is asserted on status-out. If.the queue is full, the 'done:
wait staté is entered first, which asserts 'wait until spaceé is available in the
queue. Then the *done state may be eritered. When the terminator is actually
in the queue, the 'frée state is éntered, and the fifo-buffer is ready to receive
aiiothier packet.

Not shown in the state diagfaifi id the timeout piocedute mentionéd in Sub-
section 4.1. This is bécause the details of the timeout procedurs are dependent
on the implemeéntationt. The intent of the tirmeout is to indicaté when the fifos
buffer has been waiiing an unusually long time for the packet terminator. When

14

a timeout occurs, the *abcert-request signal is sent upstream through status-
out. The fifo-buffer behavior then.contintes as described above.

4.5. Net-Input

The downstream ¢component from a net-input is a router, but the values on the
status-in pott are actually originated from a downstteam net-output and are
passed through the toutez. If the.net-input is local (connected to an operator),
its upstream component is a fifo-buffer; otherwise, its upstream component is
a net-output (on a logically neighboring site). The states of the net-input are
shown in Table F, and the transiticns are illustrated in Figure 8. A state
variable, connection, is used to save the type of the current downstream con-
néction.

H Value . _ Meaning .
first Packet received, but net-input not yet
o connected to the network. e
‘opéen Connected to network and packet trans-
. mission in progress. A
'wait Downstream requested wait after trans-
mission started. —
‘done Terminatar received, but not sent.
last Dowastream requested wait after termi-
nator received, but before it was sent.
'abort Abort requested from downstream.
*fin-abort | Abért requested, and terminator received.
free ldle—remains in this state until the net:
work connection goes free and a new
packet i8 received.

Table F: States for net-input.

The net-input begins in the 'free state, with all its downstream connections
ftee. When the front eénd of a packet arrives on packet-in, it is sent directly to
the router, which attempts to make the proper connection based on the packet’s
target list. If the router.is succéssful, it makes the apptopriate connections, be-
gifs transmission of the packet to the connécted nét-output(s), and réturns one
of the following values on connection, which ifidicates the type of connection
that was made:

'unicast All targets of the packét reside on a single site.

‘passthru The packet has multiple sites in its target list, but has only been
serit to a single net-output. Thia type of corinection indicates that the
local fifo-buffér was not available to accept a copy of the packet.

15

S/
(X first |e—DA/ 'free

Clopen
! !
open done
ARM/open p WIR wait LARM/open
Wlwait WPwait Y.
Of'open O/l'open
ARM/open

" Sy o TR/
-

4RM/Popen,

Condition Meaning
DA Data arrives.
S ‘Seek réturned (try again).
C Connection obtained.
w 'Wait rec'd on status-in.
O | 'Opén rec'd orni status-in.
ARM | 'Abort-request rec'd & this is a multicast.
TR | Terminator received.
WTR | Terminator and ‘wait received.
NW__ | Non-wait signal re¢'d on status-in. |

Figure 8: Nét-iniput state diagram.

(e)
abort

, NW/'fr‘e\

W/ 'free

’all-remote The packet has multiple sites in its target list, and the router

has made connections to multiple net-outputs. The packet’s target list.

contained only non-local sites.

‘some-local The packet has multiple sites in its target list, and the router
has made connections to multiple net-outputs. The packet’s target list
included the local site..

If the connection attempt is-unsuccessful, because of busy channels, for ex-
ample, the router returns ’seek, which prompts the net-input to tty again. If
the number of unsuccessful attempts exceeds a threshold, the router sends the
packet to the local net-output—the local operator will retransmit the packet if
any destiration in the target list ia not local.

A successful connection causes the net-input to enter the 'open state and
to assert 'open on status-out. At this point, several possible transitions can
occur. We will first consider the commit case, where 1o 'abort-request is re-
céived and the net-input successfully delivers the packet. Later, we will consider
the abort case. '

4.5.1 Commit Mode

Ignoring *abort-request for the moment, two possible events can oceur: (1) the

packet terminator arrives on the packet-in port, or (2) one or more downstream

net-outputs sénd 'wait over the status-in port. The *wait state is entered if
a 'wait signal is received; the *done state is entered if the packet terminator
is received; the 'last state is entered if both are received. Figure 8 shows the
possible transitions among these -states. . Wheaever a *wait is received from
downstream, *wait is asserted on status-out to halt the information flow from
upstream, as well. The wait condition is cleared when an *open signal appears
on status-in. This indicates that all the downstteam net-outputs ate ready to
receive the packet terminator and causes a transition from ’wait to ‘open, or
from ’last to 'done.

If the net-input is in the *done state and *open is received from downstream,
the appropriate packet términators are sent according to the type of connection:

’unicast or ’passthru: An :end-of-packet is sent to the single downstream
net-output (local or rémote).

‘all-remiote: An :end-of-packet is sent to all the non-local connected net-
outputs; :abort-packet is sent to the local fiet-output, becausé the opér-
ator should discard the packet ratheér than attempt to re-send it.

’some-local: An :end-of-packet is seit to all non-local connected net-outputs;
:local-efid-of-packet is sent to the local nét-output, so that the opétator
will ighore the rernote addresses in the packet's target list.

17—

After the packet terminator has been sent out, all connections to net-outputs .

are released, the 'free state.is entered, and the net-input is available to receive
the next packet.

4.5.2 Abort.Mode

Abort mode is entered if an 'abort-request is received from downstream be-
fore the packet terminator is sent downstream, and the current transmission is
a multicast (*all-remote or 'some-local). (*Abort-request is ignored on a
non-multicast transmission. From this point, we will assume a multicast trans-
mission.)

If the *abort-request is received before the packet terminator (i.e., while
in ’open or ’wait), the 'abort astate is entered. When the packet terminator
arrives, the net-input enters the ’fin-abort state. Altérnatively, the 'abort-
packet could arrive after the packét terminator, in which case 'fin-abort is
entered directly from *done or *last.

Whenever abort mode is entered, the net-input sends an :abort-packet to -

all non-local connected net-outputs and disconnects them. They will, in turn,
‘pass the terminator downstream when possible. The only connection retained
is to the local net-output. When the local net-output is ready to receive the.
packet terminator (i.e., 'open is received on status-in), th~ net-input passes
on whichever type of terminator it received. The two cases are as follows: _.

tend-of-packet No upstream packets have been aborted, so it is the responsi-
bility of this site to abort the downstream transmissions and to re-ttansmit
the packet. Upon receiving the :end-of-packet, the operator will notice
some non-local addresses in the packet’s target list and will send it back
out into the network.

:abort-packet Some upstream site is aborting the multicast and will eventually
resend the packet. The operator on this site, then, is instructed to ignore
this packet.

The net-input then enters the 'free state and releases the local connection,
ready to receive the next packet.

4.6 Router

The router is responsible for the following:
¢ Determining to which net-outputs a packet should be sent, based on its
list of target addresses, the system routing strategy, aid the current avail-
ability of net-outputs; and
¢ Creatitig, maintaining, aiid deleting the connections between & net-input
and a sét of nét-outputs, including transmitting data and flow control
signals between them.

18

The routet, unlike the other components, is not modelled as a finite state
machine—it is conceived as a priority network (implemented in.combinationa!
logic, for example). Information about routing and active connections can be
thought of as residing in the tables shown in Table G.. ...

o Table Contents
preference-table For each logical output
direction, a sorted list of
e e e net-outputs to be considered..
input-connection-table | For each net-input, a list of
e — | connected net-gutputs.
output-connection-table | For each net-output, its

. connected net-input. |
output-status-table For each net-output, its
transmission status.

Table G: Routing tables.

The first words of the packet are always the target list. As each target is
received, the.router makes an appropriate connection to a net-output and sends
that address downstream. The routing (for each target address) takes place in
a single communication cycle,? so there is no additional delay introduced by the
router.

If there is only one target, the router makes the connection (see below) and
returns 'unicast. If there is more than one target, the router checks the status
of the local net-output. If the status is 'free, then the appropriate connections
are made and either ’all-remote or *some-local is returned. If the local net-
output is not 'free, then & single ¢onnection is made based on the first target
on the list (ignoring the other targets), and the returned .connection value is
'passthru.

Making a connection involves determining the logical “direction” (e.g., up
or down) of the target from the local site, then determining which net-output
should be used for that direction, and finally updating the connection tables
and starting the packet transmission.

Determining the logical direction depends on the network topology and is

-usually straightforward. For example, a grid or torus fequires only somie arith-
metic comparisons between the target address and the local address to get Up,
Down, Right, Left, or some. comnbination of these. A hypercube, on the other
hand, requires an exclusive-OR operation.to see which bits in the destiniation
address are different than the local addiess. Equally simple operations can be
envisioned.for most other network topologies, as well.

9See Subiection 3.3.

19

Once the logical dizection is determined, the router looks in the preference-
table for a list of nét-outputs to consider. This table impletnents the system
touting strategy and is determined when the system is built. It lists, in de-
creasing otder of.preference, all the net-outputs that might be used to send a
packet .in a given logical direction.. The router ¢hecks all the status of each of
these, in turn, uantil an available net-output is found. If none is found, then the
connection fails, and ’seek is returned to the net-input.!® -Examples of rout-
ing strategies which may be implemented by the routing table are (1) try all
net-outputs, starting with the closest to the target, (2) try only one net-output
(static routing), and so forth.

During the transmission, the router is responsible for passing flow control
information from the nét-outputs to their connected net-inputs. If a net-output,
for example, asserts 'wait on its status line, the router must relay that signal
to the net-input which is connec¢ted to it. Also, the router cannot pass the
net-input an ’open signal until all of its downstream net-outpuis are in a non-
wait state. The input-connection-table, output-connection-table, and
output-status-table ate useful for these types of operations.

4.7 Net-Output

The upstream component of a net-output is always a net-input. On the down-
strearn.: side, the local net-output is connected to the fifo-buffer which delivers
packets to the operator, while a non-local net-output is connected to a net-input
on a logically neighboting site. The net-output states are listed in Table H, and
the transitions are illustrated in Figure 9.

State | Meaning
“first | Packet received, but not yat sent.

‘open | Packet transmission in progress.

'wait | Downstream requested wait.

‘done | Terminator received, but not sent.

‘last | Downstream requested wait after termi-
nator received, but before it was sent. |
free | Terminator sént, ready to-receivé next
packet.

Table H: States for net-output.

The net-output is initially in the 'free state. When a packet artives on
packet-in, it eniers the 'first state. If its downstream comiporent (¢ithet a

19Note that, in the case of & niulticast, partial finds (in which ofly a subsét of the tasgets can -

be assigned to net-outpiits) must bé forced to fail (by sending an :abort«packet terinifiator
over the conficction rade thus far), o the operator would not kriow which parta of & ritulticast
to retransinit in case of an abort.

20

FW/ wait

AR’abort-request

Condition __Meaning
DA | Dataarrives. '
FW | Free or 'wait rec'd on status-in.
w ‘Wait rec'd on status-in,
O '‘Open rec'd on status-in.
AR ‘Abort-request rec'd on status-in.
TR | Terminator received.
WTR | Terminator and ‘wait received.
AP | :Abort-packet terminator réceived.
NW__ | Non-wait signal re¢'d on status-it

Figure 9: Net-output state diagram.

21

net-input or a fifo-buffer) bas placed *wait .on the status:in pott, the net-
output asserts 'wait on status-out, which inhibits.the upstream net-input
from sending anything else. When the downstteam compotient becomes ready
to accept the packet, it will assert 'free.

When a 'free signal is received from downstream, the net-output trausmits
the packet and enters the 'wait state, asserting 'wait on status-out. The
fiet-output remains in the *wait state.until an ’open signal is received from
downstream.

The neét-output then enters the 'open state, sending an ‘opeén signal to
the upstream net-input (via the router). Things then continue much the same
as in the net-input. 'Wait is entered if the downstream component requests
a wait and the packet terminator has not arrived. 'Done is entetéd when the
packet terminator arrives; *last is enteréd if a wait is requested from downstream
after the terminator artives. If ant 'abort:request is received from downstream
before the packet terminator arrives, it is relayed to the upstream net-input.
If the packet terminator has already arrived, then the ’abort-request was
premature and is ignored.

Then the net-output sends the packet terminator, when the downstream
component is ready to accept it, and enters the free state. When the down-
stream net-input accepts the packet terminator and tesponds by asserting 'free,
the net-output asserts 'free on its status line. The upstream net-input will then

release the connection, and the net-output becomes available to receive the next .

packet.

5 CARE Implementation

In this section, we-provide an overview of the implementation of the proto-
col in the CARE simulation system. CARE is a library of functional modules
and intrumentation built on top of an event-driven simulator [7], which is used
to investigate parallel architectures. The typical CARE architecture is a set
of processor-memory pairs (sites) connected by some communications network,
though it can.also be configured to.represent a system of procéssors communicat-

ing through shared mémory. The behavior and relative performance of CARE .

modiles can easily be changed, and the insttumentation is flexible and useful
in evaluating the performance of an atchitectute or in observing the execution
of a patallél program.

CARE is implemented using Flavors—an object-oriented extension of Zetal-
isp (8]. Roughly speaking, éach comportent desctibed in Section 2 i3 implemented
as an object (ail instance of & flavor). (One notable exception is the routér—its
functions and tables are assured by thé site object, rather than implemented
as a séparateé componeént. Also, the memory at a site is itot explicitly repre-
sented as an object, but éxists implicitly in the sifulator.) Associated with
each object is a set of instance variables, used to hold staté inforraation, and

22

a set .of methods, procedures used by the object to tespond to messages from
other objects.!! The instance variables loosely correspond to the ports and

state variables used to desc¢ribe the protocol in Section 4. In particular, each of .

the components which are deséribed in terms of a state.machine has a instance
variable, packet-status, which hold the current state of the ¢component.

These objects commiunicate through shared structures called vids, which
réepresent uniditectional data paths. These are the “wires” which ¢onnect the
components’ “ports.”” Asserting a value on the.sending énd of the. via imme-
diately (in simulated time) triggers an event for the object at the other énd.
Therefore, a via can be considered a zero-delay wire which can transmit any
arbitrary value (not just single bits).

The simulationi is functional,!? rather than circuit-level, and event-driven,
rather than clock-driven, bécause cycle-by-¢ycle simulation of a parallel machine
would be extremely time-consuming, especially wheén the number of processors
is large. For this same reason, we do not wish to modél the transmission of
a packet one word at a time. Instead, a packet is represented by two distinct
parts, one reptesenting the contents of the packet, and the other representing
the packet terminator. In the following discussion, packet will refer to the first
part (répresénting the front edge of a “real” packet), and packet terminator will
refer to the terminator part.

In the simulation environment, explicit packet terminators allow us to (1)
implement the deadlock avoidance mechanisms described earlier, and (2) model
the transrnission of & packet through the network in terms of its front edge and
its back edge. In this way, if the time between thé transmission of the packet
(front edge) and its terminatot in the simulator is the same as the transmission
time of the packet in a real machine, we ¢an accurately model the transmission
of the packat without explicitly representing every word.

In the following subsections, we describe how the protocol is implemented
in terms of objects, packets, and packet terminators.

5.1 Operator

The time required to transfer a packet from the operator to a fifo-buffer (one
word at a time) would be proportional to the size.of the packet._To model.this,

110Objects afid messages are only a software tool uséd by the simulator. Sendinig mésséges
between objetts in the siftiulator had no pasticulad corfeipondénce to seiidinig packets bétweéen
components in the target machine.)

12The sitaulation is functional, in the sense that not every aspect of the hardware is 4im-
ulated in detail. Soré aspécts are simulated by régister transfer lével behavior, while othet
aspotis have only afunctiorial desctiptioca. Fof éxampla, the éxécution of applicition codé by
the évaluator is fiot simtilated at all—it is directly executed by theé host machirié. Howevér,
tifhing infortnation fof the éxecution of applicatich code, based o méasurenients and esti-
1itates, is uied to asiure that the simulation is reasoriably faithful to the execition of & “réal”
machine.

23

the operator delays an appropriate time between sending a packet and sending
its términator.. ,

Bécause storage in the simulated fifo-buffer is in terms of packets, rather than
bytes!3, there will be no wait signals received from the downstream fifo-buffer.
Therefore, merely delaying for. a time proportional to packeét size is sufficient.

A CARE operator receives a packet as deséribed in the protacol. Note that
the time between receiving the packet and its terminator is dependent on the
size of the packet plus any delays encountered on its transmission path.

5.2 Fifosbuffer

In the simulator, the atnount of storage in the fifo-buffer may be set at run
time.!t Each packet or packet terminator takes up one space in the buffer,
no matter what its actual size. In particulat, the buffer.cannot fill up in the
middle of adecepting a packet, so the 'wait state will iever be entered. Thus
the opetator, which feeds data into a iifo-buffer, does not have to deal with any.
waiting time in the middle of transmitting a packet, as deséribed above. This
simplifies the implementation of the protocol, at the expense of a slight loss of
fidelity in the simulatton.

Cn the output side, however, the simulated fifo-buffer is more complex thaa
the protocol indicates. If a packet is being output from the queue, the fifo-
bufféer must introduce a delay between the packet and its terir ™ ator to model
the packet transit time. However, the transit time is not mc :ly proportional
to packet dize, because downstréam blocking could cause atbiirary delays in the
transmission.

The simulated. fifo-buffer output transitions are shown in Figure 10. In this
case, the transitions are labelled with conditions and actions, ratheér than flow
¢ontrol signals. Some additional instance variables for the fifo-buffer are required
to implement the output function. They ate:

1. transmission-status: State.of packet cutput.
2. delay: Accumulated tire spent waiting.
3. last-wait: Event time when last *wait was received.

Initially, transmission-atatus is ‘free. If the downstteam ¢ompoitent te-
queats data (status-in goes to 'free) and the queue is not emmpty, the top of the-
queue, which fust be a packet, is placéd on thé packet-out via, delay is set
to Zéfo, and transmission-status goés to ‘busy. Also, tranimission-status
is scheduléd to go to "done at a time that is proportional to packet size.

135¢e subsection 5.3. N
4By sctiing the cafa:***buffac-slie®®® viriable to iy positivé iritéger, or o all, which
meéans “unbounded.”

24

OND/terin
_DONE/

O/delay WD/bury
[Condition] Meaning__
F 'Free rec'd on status-in.

w ‘Wait rec'd on status-in..
O | 'Open rec'd on status-in.
DONE | 'Done.event.
WD | 'Wait ree’d and
[delay nonzero OR last-wait non-nil].
OND | 'Openrecd and
[delay = 0 AND last-wait = nit].

p—

_Action | Meaging
send | Send pacKet, schedule 'done for
fow + tran$mission-time. _ _
Ilwnow | Last-wait = now.

delay | Delay = delay + (now - last-wait);
Last-wait = nil.
busy | Schedule ‘dorie for now + delay;
 Last-wait = nil,
term Send terminator.

Figute 10: Impleriented fifo-buffer output state diagram.

25 .

If no *wait signals are received from downstream while the transmission is
‘busy, then the transmission will be done after the packet transit time has
elapsed, and the packet terminator will be séut as séon as the downstream
component is ready to receive it.

However, if 'wait is received during 'busy, last-wait is set. to the current
time and waiting is set to t. If *opea is received duting *busy, the time spent
waiting is added to delay and waiting is set to nil.

If ‘open is réceived when transmission-status is 'done, and delay is
nop-zero, then *busy is entéred again, 'done is scheduled for the currént time
plus the accumulated delay, waiting is sét to nil, and delay is set tc zéro.
Alternatively, if waiting is t and delay is.zero, then *done has occurred in the
middle of & wait; 'busy is entered, waiting is set to nil, and 'done is scheduled
for the current time plus the difference between now and last-wait.

Finelly, when 'ttansinission-status is *done, délay is zero, and waiting
is nil, the top item of the queve (which must be a packet terminatér) will be

sent. Then transmission-status becomes free, and the fifo-buffer is ready to

reapond to the next data request.

All of this is to ensure that the time between the packet and its terminator is .

denendent on the packet size plus any network delays along its path. The other
coniponients, net-inputs and net-outputs, do not require this added complexity
" on the output side. They will either maintain the cutrent tifme separation or
add to it due to downstream blockages, so there is no chance of their sending
the packet terminator préméaturely.

5.3 Net<Input

The main différences between the implementation and protocol concérning the
net-input stem from the fact that there is no explicit router in CARE. Each net-
input, then, éommunicatés with the site which owns it (see Section 2), rather
than with a dowastream router. The communication is done by passing Flavore
messages, rather than asserting data on vias—thus, thete is o packet-out
instance variable, and status-in is not a via.!®

To- connect to aet-outputs, the net-input sends a :connect message to the
site. The gite then performs the routing and makes the connéctions as described
in Subsection 4.8, returning éither 'séek of the type of connéction rmade. Also,
the site relays flow control information from the confected fiet-outputs by set-
ting status-in. o

Other sité miethods used by the net-input include :disconnéct-remote,
which teleasés thé connections to all nét-outputs except the local one, aid
wwend-all, which transmité s packét of tefiniinator to all connected tet-
outputs. (:Send-local and :wend-ramote tiansiit to a subsét of connected

134/ as fniiat coftnict Wwo diitinét objects; status-in méy be conhitéd to any gioup of

26

NW/'free

TR/
WTR/ wait

ARM/open

Wrwait
O/'open
— TR/
wait
ARM/open ARM/'open
'abort R/ e TNW/
_ abort
Condition T Meanng

DA . | Data amrives.
S 'Seek returned (try again).
C Connection obtained. .

w 'Wait re¢'d 61 status-in..
0 '‘Open rec'd on status-in.
ARM | 'Abort-request rec'd & this is a multicast

TR Terminator received
WTR | Términator and 'wait feceived.
NW | Non-wait signal féc'd ofi status-in.

Figure 11: Implementéd net-input staie diagram.

27

net-outputs.)

Thete i3 a potential software race in the simulator, which is avoided by
adding an additional state in the net-input state machine description. If the
nét-input is in the 'done state and notices that none of the downstream net-
outputs has asserted ‘wait, it sends the packet terminator. However, thére
might be a simulation event scheduled for the same time slot in which one of
the net-outputs receives a 'wait and propagates it upstréam. In a real machine,
this means that the terminator would not have been sent, but there is no way
to “undo” the fisst action by the simulator.

Thus, instead of sending the terminator from the 'done state, thé net-input
dchédules a transition to.the *final state two evént-times later. This allows time
for all the possible 'wait signals.to be handled during the same évent. When the
'final state is entered, the atate of the connected net-outputs is again examined.
If none of them are blocked, the packet terminators are sent immediately (in
simulation time), and the.'free state is entered. Any 'wait signal which could
arrive-at that same instant would be too late to block the transmission in a real
machine. The implemented version of the net-input state machine is illustrated
in Figure 11,

5.4 Router .

As mentioned earlier, there is no explicit router object in the CARE implemen-
tution. There are, however, site functions and methods which perform routing
in response to a :connect message sént by a net-input.

The :find-direction method determines the logica! direction of a target,
given its address. This is defined as a method, rather than a function, because
this opetation is topology-dependént. In Flavors, we ¢an define. a specialized
site object for a particulat topology by changing this one method and inheriting
the remaining behavior from the generic site definition.

The setup-targets functior. examines the target list, makes the connections,
and copies the packet, as iéeded. Finally, the make-conneétions funétion is
résposible for actually sétting up connections and sending the packet down:
stream.

5.5 Net-Output
In the CARE impleméntation of the nét-output, these is no explicit status.
out instance variable for sending flow contiol inforfation upstrearn. Instead,

ihesaages aie sent to the jife, as above, which updatés the status table for the—

particular net-outpui and rélays the information to the corinectéd fei-input.
There aré :wait, :opén, :abort-reqirest and :free meéthods defiied for the
site for this purposé. Also, bécause packet input can come from any of the
fiet-inputs on the site, packet-in is not implemented as a via.

28

Finally, on the initial transition into the 'wait state (from ’first) the net-
output sends a :first-wait message, which updates the status table but does not
trigger an event for the upstream net-input. This prevents unnecessary simula-
tor.events used to propagateé the *wait signal upstréam; they are unnecessary
because the net-input will not send anything else until the net-output sends an
‘open signal.

5.6 Results
Variants of this protocol have been used for many CARE simulations.over the

course.of séveral months. Though the performance has not been extensively -

measured, the protocol appears to offer reasonable performance over a range of
network loads. Deadlocks and lost packets do not occur, even when the net-
work is extremely congested. Thus, our éxperience with the protocol indicates
that it offers efficient and robust one-to-one and one-to-many interprocessor
communication.

6 Conclusion

A protocol for high-performance interprocessor commuanication has been pre-
sented. This protocol supports dynamic, cut-through routing with local flow
control, which allows high-throughput, low-laténcy transmission of packets. In
addition, multicast transmissions are allowed, in which a packet is sent to several
targets using common resources as much as possible.

The protocol also prescribes mechanisris for detecting and avoiding deadlock

conditions due to resdurce conflicts during multicast. In particular, a copy of.

the packet is saved before it is split, special packet terminators are used to
abort transmissions and trigger retransmissions, and random timeout intervals
are used to detect potential deadlock conditions.

Finally, the implementatioa of this protocol in.the CARE simulation sys-

tem is described. Explicitly representing a packet as the front edge and the ..

terminator allows accurate modelling of word-by-word packet transmission in

a functional, event-driven simulator. Also, tite success of the implementation

indicatés that this i a réasonable protocel for interpiocessor communication.

References

(1) Tse-yun Feiig. A sutvey of intérconnection networks. Computer, 12-27,
Decernber 1981.

[21V. Ahuja. Design anid Analysis of Computér Communication Networks.
McGraw-Hill,.1982.

29

(3] P. Kernami and L. Kleinrock. Virtual ¢ut-through: a new computer ¢om-
munication switching technique. Computer Networks, 3:267, 1979.

(4] M. Arango, H. Badr, and D. Gelernter. Staged circuit switching. IEEE
Transactions on Computers, C-34(2):174-180, February 1985.

(5] P. Kermani and L. Kleinrock.. A .tradeoff study of switching systems in
computer communication networks. IEEE Transactions on Computers, C-
20:1052, December 1980.

(6] Richard W. Watson. Distributed system architectuie model. In Dis-

tributed Systems—Architecture and Impleméntation, chapter 2, pages 10-43, .-

Svringer-Verlag, 1981,

(7] Bruce A. Delagi, Nakul Saraiya, Sayuri Nishimura, and Greg Byrd. An
Instrumented Architectural Simulation System. Technical Report KSL-86-
38, Knowledge Systems Laboratory, Stanford University, J anuary 1987.

(8] Sonya Keene and David Moon. Flavots: object-oriented ptogramming on
Symbolics computers. In Common Lisp Conference, 1985.

30

